Streaming vs Batch Architecture | CONFIDENTIAL

STREAMING VS BATCH
ARCHITECTURE GUIDE

Lambda • Kappa • Hybrid Patterns • Selection Criteria

Version 1.0 | January 2026

Table of Contents

1. Architecture Patterns Overview
Modern data architectures often require both real-time and batch processing. Understanding when to use streaming vs batch—and how to combine them—is essential for building effective data platforms.
1.1 Batch Processing
Process large volumes of data at scheduled intervals.
1. High throughput for large datasets
1. Cost-effective for non-time-sensitive workloads
1. Mature tooling and patterns
1. Easier debugging and reprocessing
1. Latency: Minutes to hours
1.2 Stream Processing
Process data continuously as it arrives.
1. Low latency (seconds to milliseconds)
1. Real-time insights and actions
1. Event-driven architecture
1. Continuous output
1. Higher complexity and cost
1.3 Comparison
	Aspect
	Batch
	Streaming

	Latency
	Minutes to hours
	Milliseconds to seconds

	Throughput
	Very high
	High

	Complexity
	Lower
	Higher

	Cost
	Lower (scheduled)
	Higher (continuous)

	State Management
	Simple
	Complex

	Error Handling
	Rerun entire batch
	Per-event handling

2. Lambda Architecture
Lambda architecture combines batch and streaming for complete and timely results.
2.1 Architecture Components
┌───┐
│ Data Sources │
└────────────────────┬────────────────────────────┘
 │
 ┌────────────┴────────────┐
 ▼ ▼
┌───────────────┐ ┌───────────────┐
│ Speed Layer │ │ Batch Layer │
│ (Streaming) │ │ (Batch) │
└───────┬───────┘ └───────┬───────┘
 │ │
 └────────────┬────────────┘
 ▼
 ┌─────────────┐
 │Serving Layer│
 └─────────────┘
2.2 Layer Functions
Batch Layer
1. Processes complete dataset
1. Creates batch views (accurate, comprehensive)
1. Handles recomputation and corrections
1. Fabric: Lakehouse + Spark notebooks
Speed Layer
1. Processes new data in real-time
1. Creates real-time views (fast, approximate)
1. Compensates for batch layer latency
1. Fabric: Eventstream + KQL Database
Serving Layer
1. Merges batch and speed layer views
1. Serves queries to applications
1. Fabric: Power BI + Real-Time Dashboards
2.3 Lambda in Fabric
// Lambda Implementation
Sources → Event Hub/IoT Hub

Speed Layer:
 Eventstream → KQL Database (real-time views)

Batch Layer:
 Eventstream → Lakehouse (raw events)
 Spark Notebooks → Lakehouse (batch views)

Serving Layer:
 KQL + Lakehouse → Power BI/Dashboards

3. Kappa Architecture
Kappa architecture simplifies by using streaming for all processing, treating batch as a special case of streaming.
3.1 Architecture Overview
┌───┐
│ Data Sources │
└────────────────────┬────────────────────────────┘
 │
 ▼
 ┌─────────────┐
 │ Stream │
 │ Processing │
 └──────┬──────┘
 │
 ▼
 ┌─────────────┐
 │Serving Layer│
 └─────────────┘
3.2 Key Principles
1. Single processing path (streaming only)
1. Reprocess by replaying event log
1. Simpler codebase (no duplicate logic)
1. Requires durable event log/stream
1. Well-suited for event-sourced systems
3.3 Kappa in Fabric
// Kappa Implementation
Sources → Event Hub (with long retention)

Stream Processing:
 Eventstream → Transformations → KQL Database

Reprocessing:
 Replay Event Hub → Eventstream → New KQL table
 Switch serving layer to new table

Serving:
 KQL Database → Real-Time Dashboards
3.4 Lambda vs Kappa
	Aspect
	Lambda
	Kappa

	Complexity
	Higher (two paths)
	Lower (one path)

	Reprocessing
	Batch recomputes
	Replay stream

	Accuracy
	Batch = source of truth
	Stream = source of truth

	Best For
	Complex aggregations
	Event-driven systems

4. Hybrid Patterns in Fabric
4.1 Pattern: Hot + Cold Path
Route data to different destinations based on latency requirements.
Eventstream Configuration:

Source: Event Hub
 │
 ├── Hot Path (real-time)
 │ └── KQL Database → Real-Time Dashboard
 │
 └── Cold Path (batch)
 └── Lakehouse → Spark Processing → Power BI
Use Case
1. Hot: Real-time alerts and monitoring
1. Cold: Historical analysis and ML training
1. Both paths from same source data
4.2 Pattern: Streaming Aggregation + Batch Detail
Pre-aggregate in stream, store detail in batch.
Eventstream:
 Source: Sensor Data
 │
 ├── Aggregate (5-min avg)
 │ └── KQL Database (metrics)
 │
 └── Raw Events
 └── Lakehouse (detail for drill-down)
4.3 Pattern: Real-Time Enrichment
Enrich streaming data with batch-maintained reference data.
// Reference data in Lakehouse (batch maintained)
dim_device: Updated nightly via batch pipeline

// Streaming enrichment
Eventstream:
 Source: Device Events
 │
 └── Join: Lakehouse dim_device (shortcut)
 └── Enriched events → KQL Database

5. Selection Criteria
5.1 Use Batch When
1. Latency of minutes/hours is acceptable
1. Processing complete datasets is required
1. Complex transformations with many joins
1. Cost optimization is priority
1. Reprocessing/corrections are frequent
1. Team has batch processing expertise
5.2 Use Streaming When
1. Sub-second latency is required
1. Real-time alerting/monitoring needed
1. Event-driven actions required
1. Continuous data flow from IoT/sensors
1. User-facing real-time dashboards
1. Fraud detection or anomaly alerting
5.3 Use Hybrid When
1. Need both real-time and historical views
1. Different SLAs for different consumers
1. Streaming for speed, batch for accuracy
1. Complex ML that needs batch + real-time scoring
1. Gradual migration from batch to streaming
5.4 Decision Matrix
	Requirement
	Architecture
	Fabric Components

	Real-time dashboards only
	Kappa
	Eventstream + KQL

	Historical analysis only
	Batch only
	Lakehouse + Spark

	Both real-time and history
	Lambda/Hybrid
	All components

	ML training + real-time score
	Lambda
	Lakehouse + KQL

6. Implementation Guidelines
6.1 Fabric Component Mapping
	Function
	Streaming
	Batch

	Ingestion
	Eventstream
	Copy Activity, Dataflow

	Processing
	Eventstream transforms
	Spark notebooks

	Storage
	KQL Database
	Lakehouse/Warehouse

	Query
	KQL
	Spark SQL / T-SQL

	Visualization
	RT Dashboard
	Power BI

6.2 Best Practices
1. Start with clear latency requirements
1. Design for reprocessing from day one
1. Use consistent schemas across paths
1. Implement idempotent processing
1. Monitor both paths independently
1. Plan for gradual evolution
6.3 Common Pitfalls
1. Over-engineering: Using streaming when batch suffices
1. Under-engineering: Batch when real-time is needed
1. Duplicate logic: Inconsistent results between paths
1. No reprocessing plan: Unable to fix historical data
1. Ignoring costs: Streaming can be expensive at scale

Appendix: Document Information
	Document Title
	Streaming vs Batch Architecture Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
